Nevada Department of Transportation Hazardous Commodity Flow Study Nevada SERC Meeting - November 8, 2018

Nevada Department of Transportation

presented by

Dan Andersen, Cambridge Systematics, Inc. David Willauer, Cambridge Systematics, Inc.

Overview

- Chemical Selection Process
- Petroleum Supply Chain Preliminary Results
- Hazmat Roadside Data Collection Update
- Questions

Chemical Selection Process Details

Purpose

- Facilities reported over 18,000 toxic and flammable chemicals stored at more that 2,300 locations in Nevada. With so many chemicals in transport, the CS Team focused on priority chemicals that pose the greatest health and safety hazards to the public.
- Identifying priority chemicals also helps to determine which facilities to contact for additional hazmat routing, frequency and volume data.

Data Collection Details

Chemical Data Sources

- Extremely Hazardous Substances (EHS) are the priority, however, others may also be selected
- CAPP Data Risk Management Plans (RMP) required by EPA
- Toxics Release Inventory (TRI) Data
- Nevada Statewide Hazmat Database (Tier II Chemical Reporting)
- CAMEO Chemical Database

Methodology

 The CS Team isolation distance, threshold planning quantity, lower flammability limit and flash point as criteria to determine hazmat priority.

Criterion	Description	Source
Isolation Distance	Recommended distance within which first responders should position emergency assets	Emergency Response Guidebook
Threshold Planning Quantity	Minimum amount of chemical that if present at a facility poses a hazard	EPA/CAMEO
Lower Flammable Limit (LFL)	Lower limit of a concentration range of a gas or vapor that will burn if exposed to an ignition source.	Engineering Toolbox
Flash Point	Temperature at which vapor from gas ignites	NFPA

Isolation Distance

• For both toxic and flammable chemicals, Isolation Distance was calculated for large spills from truck and rail. This is defined as the recommended distance from a spill source within which first responders should position emergency assets. The larger the Isolation Distance, the greater the hazard.

Isolation Distance (in feet) Toxic Chemicals	Score
0-500	1
501-1000	2
1001-2000	3
2001-3000	4

Threshold Planning Quantity

 TPQ is defined as the minimum amount of chemical that if present at a facility, the EPA requires the development of a Risk Management Plan (RMP). The lower the level of TPQ, the higher the hazard from the chemical.

Threshold Planning Quantity (in Ibs.)	Score
0-100	3
101-500	2
501-1000	1

Flammability Range

The Flammable Range (Explosive Range) is the concentration range of a gas or vapor that will burn (or explode) if an ignition source is introduced. Below the explosive or flammable range the mixture is too lean to burn and above the upper explosive or flammable limit the mixture is too rich to burn. The lower the flammability level, the higher the hazard.

Lower Flammable Limit (LFL)	Score
0-2	2
2-4	1.5
4-6	1
6-8	0.5

Flash Point

 The Flash Point is the temperature at which vapor from flammable liquids ignite. This can be a positive or negative number. The lower the flash point, the higher the score.

Flash Point	Score
-100+° F	1.5
0 to -100° F	1
0-100° F	0.5

Scoring Table (Excerpt)

	Chemical Name	Isolation distance ft.	TPQ lbs.	LFL	Flash Point ° F	Iso. Dist. Score	TPQ Scor e	LFL Scor e	Flash Point Score	Final Score	On-Site Ibs.	Sites	EHS
1	Chlorine	3,000	100	0		4	3	0	0	7	5,461,350	6	Yes
2	Sulfur Dioxide	3,000	500	0		4	2	0	0	6	288,521	1	Yes
3	Nitrogen Dioxide	1,250	100	0		3	3	0	0	6	69	2	Yes
4	Isobutane	2,640	0	1.8	-117	2	0	2	1.5	5.5	2,128,779	4	No
5	Hydrocyanic Acid	1,000	100	0		2	3	0	0	5	19,194	1	Yes
6	Butane	2,640	0	1.86	-76	2	0	2	1	5	2,450,876	6	No
7	Propane	2,640	0	2.1	-155	2	0	1.5	1.5	5	4,545,685	7	No

Proposed Top Ten Chemicals

	Chemical Name	Score	core Chemical Uses		EHS
1	Ammonia, Anhydrous	4	Refrigerant, fertilizer	18	Yes
2	Butane	4	Fuel and blending	6	No
3	Chlorine	7	Water treatment	6	Yes
4	Ethanol	1	Biofuel	5	No
5	Hydrofluoric acid	4	Manufacturing	8	Yes
6	Nitrogen Dioxide	6	Catalyst, oxidizing agent	2	Yes
7	Potassium Cyanide	4	Mining and electroplating	2	Yes
8	Propane	3.5	Fuel and heating	7	No
9	Sodium Cyanide	4	Mining operations	18	Yes
10	Titanium tetrachloride	4	Titanium, whitening	4	Yes

Next Steps for Top Ten Chemicals

- Identify hazmat facilities storing top ten chemicals
- Identify distribution centers and manufacturers
- Conduct outreach to top ten hazmat facilities
- Obtain origin-destination information from multiple sources
- Develop top ten chemical maps

Petroleum Supply Chain Methodology

- Nevada refined petroleum is produced in California and Utah
- Refined Petroleum is transported to Nevada via pipelines.
- Petroleum is primarily stored in Reno and Las Vegas
- Trucks transport refined petroleum to retail facilities

Petroleum Sources

Petroleum Storage

Refined Product	Approximate Barrels per Month
Gasoline	1,000,000
Diesel Fuel	500,000
Jet Fuel	1,100,000
Other Terminals	1,000,000
Total	3,600,000

 Other terminals include Pacific Tank Lines, Haycock Petroleum Company (Sinclair) and Pro Petroleum

Petroleum Distribution

Roadside Hazmat Surveys

Roadside Placard Surveys

- Two hour bi-directional counts of trucks displaying hazmat placards
 - » ID truck volumes, types and hazmat placards
 - » Conducted on weekdays and daylight hours
- Up to 20 count locations
 - » 8 in Las Vegas area
 - » 5 in the Reno area
 - » 7 in rural areas

Truck Placard Placement

Hazmat Classifications

Data Collection Identifying Hazmat Placards

Use Worksheets to record Hazmat Counts **United Nations** (UN) Number 3

HazFlow Data Collection

Date/ Time		Highway Cross Street		US 95 (SAMPLE) Skye Canyon Drive			
	UN Number		Color Direct		Notes		
1	1203	Red	N		Flying J		
2	1075	Red	S		Red S		
3	1005	Green	S				

Questions

THANK YOU!

Contacts:

Bill Thompson bthompson@dot.nv.gov 775-888-7354

Dan Andersen

dandersen@camsys.com 702-303-5419 **David Willauer** dwillauer@camsys.com 301-347-9135